SRINIVAS INSTITUTE OF TECHNOLOGY

Page No...1

06MAT11

USN					

NEW SCHEME

SRINIVAS INSTITUTE OF TECHNOLOGY

First Semester B.E. Degree Examination, Dec. 06 / Jan. 07 Common to All Branches **Engineering Mathematics – i**

Time: 3 hrs.]

Max. Marks: 100

Note: Attempt any FIVE full questions choosing atleast TWO questions from each part.

PART A

1 a. If
$$y = \log_{10} \left[(1 - 2x)^3 (8x + 1)^5 \right]$$
 find y_n . (07 Marks)

b. If
$$y = \log(x + \sqrt{1 + x^2})$$
 show that $(1 + x^2)y_{n+2} + (2n+1)xy_{n+1} + n^2y_n = 0$. (07 Marks)
c. Find the pedal equation of the curve $r = ae^{m\theta}$. (06 Marks)

c. Find the pedal equation of the curve
$$r = ae^{m\theta}$$
. (06 Marks)

2 a. State and prove Euler's theorem for
$$f(x, y)$$
, a homogenous function of degree n, and prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = n(n-1)f(x, y)$. (07 Marks)

b. If
$$u = x \log(xy)$$
 where $x^3 + y^3 + 3xy = 1$, find $\frac{dy}{dx}$ and hence find $\frac{du}{dx}$. (07 Marks)

c. If
$$u = x^2 - y^2$$
, $v = 2xy$ and $x = r\cos\theta$, $y = r\sin\theta$, determine the value of the Jacobian $\frac{\partial(u,v)}{\partial(r,\theta)}$.

3 a. Using the reduction formula, evaluate
$$\int \tan^6 x dx$$
. (07 Marks)

b. If n is a positive integer, show that
$$\int_{0}^{2a} x^{n} \sqrt{2ax - x^{2}} dx = \frac{(2n+1)!}{(n+2)! n!} \frac{a^{n+2}}{2^{n}} \pi \cdot (07 \text{ Marks})$$

c. Trace the curve
$$r^2 = a^2 \cos 2\theta$$
. (06 Marks)

4 a. If
$$x = a(\cos\theta + \theta\sin\theta)$$
, $y = a(\sin\theta - \theta\cos\theta)$, find $\frac{ds}{d\theta}$. (07 Marks)

b. Find the area between the curve
$$x^2y^2 = a^2(y^2 - x^2)$$
 and its asymptotes $x = \pm a$.

(07 Marks

c. By differentiation under integral sign, show that
$$\int_{0}^{\pi} \frac{\log(1 + a\cos x)}{\cos x} dx = \pi \sin^{-1} a.$$
 (06 Marks)

Contd.... 2

PART B

5 a. Solve $\frac{dy}{dx} = (4x + y + 1)^2$. (07 Marks)

b. Solve $y' = \frac{xy^2 - 1}{1 - x^2y}$. (07 Marks)

c. Find the orthogonal trajectories of the family of circles $x^2 + y^2 = 2cx$. (06 Marks)

6 a. Discuss the nature of the series:

b. Find the nature of the series:

$$\frac{3}{4}x + \left(\frac{4}{5}\right)^2 x^2 + \left(\frac{5}{6}\right)^3 x^3 + ---- \infty. \quad x>0$$
 (07 Marks)

c. Test the series $1 - \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} - \frac{1}{4\sqrt{4}} + - - - - \infty$ for absolute convergence.

(06 Marks)

7 a. Find the equation of the line drawn through the point (1, 0, -1) and intersecting the lines x = 2y = 2z and 3x + 4y = 1, 4x + 5z = 2. (07 Marks)

b. Find the equations of the two planes which bisect the angles between the planes 3x - 4y + 5z = 3, 5x + 3y - 4z = 9. Also point out which of the planes bisect the acute angle. (07 Marks)

c. Find the magnitude and the equations of the shortest distance between the lines x y z x-2 y-1 z+2

$$\frac{x}{2} = \frac{y}{-3} = \frac{z}{1}$$
 and $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$. (06 Marks)

8 a. Find the tangential and normal components of acceleration of a particle moving along curve $x(t) = t^2$, $y(t) = -t^3$, $z(t) = t^4$ at t = 1. (07 Marks)

b. If $\overrightarrow{F} = \text{grad}(x^3y + y^3z + z^3x - x^2y^2z^2)$ find $\overrightarrow{div F}$ and $\overrightarrow{curl F}$ at (1, 2, 3). (07 Marks)

c. Prove that $\operatorname{curl} (\operatorname{grad} \varphi) = 0$. (06 Marks)

USN

First Semester B.E. Degree Examination, July 2007 Common to All Branches Engineering Mathematics – I

Time: 3 hrs.]

4

[Max. Marks:100

Note: Answer any FIVE full questions choosing atleast two from each part.

PART A

1 a. Find the nth derivative of $y = x^2 \cos^2(3x)$.

(07 Marks)

- b. If $y^{\frac{1}{m}} + y^{-\frac{1}{m}} = 2x$, find the value of $(x^2 1)y_{n+2} + (2n-1)xy_{n+1}$ using Leibnitz's theorem. (07 Marks)
- c. Find the pedal equation of curve $r^2 = a^2 Sec(2\theta)$.

(06 Marks)

2 a. If f(X, Y) is a homogeneous function of degree 'n' then prove that $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = nf$

and
$$x^2 \frac{\partial^2 f}{\partial x^2} + 2xy \frac{\partial^2 f}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial y^2} = n(n-1)f$$
. (07 Marks)

b. If $X = e^{V}sec(u)$, $Y = e^{V}tan(u)$ prove that JJ' = 1.

(07 Marks)

- c. The time 't' of oscillation of a simple pendulum of length 'l' is given by $t = 2\pi \sqrt{\frac{1}{g}}$, where 'g' is constant. What is the approximate error in the calculated value of 't' corresponding to error of 2% in the value of 'l'? (06 Marks)
- 3 a. Evaluate $\int \sin^5 x dx$ using reduction formula and hence find $\int_0^{\pi/2} \sin^5(x) dx$. (07 Marks)

b. Evaluate
$$\int_{0}^{\pi/6} \cos^{4}(3x) \sin^{2}(6x) dx$$
 using reduction formula. (07 Marks)

c. Trace the curve $xy^2 = a^2(a - x)$.

(06 Marks)

PART B

- 4 a. Find $\frac{ds}{d\theta}$ and $\frac{ds}{dr}$ for the curve $r = a(1 + \cos\theta)$. (07 Marks)
 - b. Find the volume of the solid generated by revolving the asteroid $x^{2/3} + y^{2/3} = a^{2/3}$ about x-axis. (07 Marks)
 - c. Using differentiation under integral sign, evaluate $\int_0^\infty \frac{e^{-x}}{x} (1 e^{-\alpha x}) dx$, $\alpha > -1$.

(06 Marks)

Contd.... 2

T.32 Srinivas Institute of Technology

06MAT11

- a. Solve: $\frac{dy}{dx} = \frac{y^2 + y + 1}{x^2 + y + 1}$ (05 Marks)
 - b. Solve: $xdy ydx = \sqrt{x^2 + y^2} dx$. (05 Marks)
 - c. Solve: (2x + y 1)dy = (x 2y + 5)dx(05 Marks)
 - d. Find orthogonal trajectories of family of cardioides $r = a(1 \cos\phi)$. (05 Marks)
- 6 a. State: i) Comparison test ii) Ratio test iii) Cauchy's root test. (07 Marks)
 - b. Show that the series $\sum \frac{1}{n^P}$ converges if P > 1 and diverges if $P \le 1$. (07 Marks)
 - c. Test the convergence of the series $\sum \frac{[(n+1)x]^n}{n^{n+1}}$. (06 Marks)
- 7 Find the angle between the lines whose direction cosines satisfy the relations 1 + 3m + 5n = 0 and 2mn - 6nl - 5lm = 0. (07 Marks)
 - b. Find the length and the foot of the perpendicular dropped from the point (3, 2, 1) onto the plane passing through the points (1, 1, 0), (3, -1, 1) and (-1, 0, 2). (07 Marks)
 - c. Find the shortest distance between the lines x + 2y 3z 2 = 0; 2x y z + 1 = 0

and
$$\frac{x-1}{1} = \frac{y-1}{2} = \frac{z}{3}$$
. (06 Marks)

- a. Find the tangential and normal components of acceleration of a particle moving along curve $x(t) = t^2$, $y(t) = -t^3$, $z(t) = t^4$ at t = 1. (07 Marks)
 - b. If $\overrightarrow{F} = \text{grad}(x^3y + y^3z + z^3x x^2y^2z^2)$, find div. \overrightarrow{F} and curl \overrightarrow{F} at (1, 2, 3). (07 Marks)
 - Prove that $\operatorname{curl}(\operatorname{grad}\Phi) = 0$. (06 Marks)

06MAT11

First Semester B.E. Degree Examination, Dec. 07 / Jan. 08 Engineering Mathematics I

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions choosing at least two questions from each part.

Part A

1 a. Find the nth derivatives of,

i)
$$e^{-x}\sin^2 x$$
.

ii)
$$\frac{x}{(x-1)(2x+3)}$$

(07 Marks)

b. Prove that

$$D^{n} \left[\frac{\log x}{x} \right] = \frac{(-1)^{n} n!}{x^{n+1}} \left[\log x - 1 - \frac{1}{2} - \frac{1}{3} - \dots - \frac{1}{n} \right].$$

(07 Marks)

c. With the usual notation, prove that

$$\frac{1}{P^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2.$$

(06 Marks)

2 a. If
$$u = \sin^{-1}\left(\frac{3x^2 + 4y^2}{3x + 4y}\right)$$
, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \tan u$. (07 Marks)

b. If
$$u = f(x - y, y - z, z - x)$$
, prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.

(07 Marks)

c. If
$$x = e^u \cos v$$
 and $y = e^u \sin v$, show that $J \cdot J' = 1$.

(06 Marks)

3 a. Obtain the reduction formula for $I_n = \int_0^{\frac{\pi}{2}} \cos^n x dx$, where n is a positive integer and hence

evaluate I₅.

(07 Marks)

b. Evaluate:
$$\int_{0}^{2a} x^2 \sqrt{2ax - x^2} \cdot dx$$
.

(07 Marks)

c. Trace the curve
$$y^2(a-x)=x^3$$
, where $a>0$.

(06 Marks)

4 a. For the cycloid
$$x = a(\theta - \sin \theta)$$
, $y = a(1 - \cos \theta)$, find $\frac{ds}{dx}$ and $\frac{ds}{dy}$. (07 Marks)

b. Find the area of the cardioid $r = a(1 + \cos \theta)$.

(07 Marks)

c. By the differentiation under integral sign, evaluate $\int_{0}^{1} \frac{x^{\alpha} - 1}{\log x} dx$, given $\alpha \ge 0$. (06 Marks)

Srinivas Institute of Technology Library, Mangalore

06MAT11

Part B

5 a. Solve:

i)
$$\frac{dy}{dx} = \frac{x(2\log x + 1)}{\sin y + y\cos y}.$$

ii)
$$(1+y^2)dx = (\tan^{-1} y - x)dy$$
.

iii)
$$(5x^4 + 3x^2y^2 - 2xy^3)dx + (2x^3y - 3x^2y^2 - 5y^4)dy = 0$$
 (15 Marks)

b. Find the orthogonal trajectories of the family $\frac{2a}{r} = 1 - \cos\theta$. (05 Marks)

6 a. Test for convergence of the series,

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + \sqrt{n+1}}$$
 (07 Marks)

b. Test for convergence of the series,

$$\frac{x}{1\cdot 2} + \frac{x^2}{2\cdot 3} + \frac{x^3}{3\cdot 4} + \dots + \infty.$$
 (07 Marks)

c. Test the following series for convergence and absolute convergence,

$$1 - \frac{1}{5} + \frac{1}{9} - \frac{1}{13} + \dots$$
 (06 Marks)

7 a. If (l_1, m_1, n_1) and (l_2, m_2, n_2) are the direction cosines of two lines subtending an angle θ between them. Then prove that $\cos \theta = l_1 l_2 + m_1 m_2 + n_1 n_2$. (07 Marks)

b. Find the image of the point (1, -1, 2) in the plane 2x+2y+z=1. (07 Marks)

c. Find the magnitude and equations of the shortest distance between the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} \text{ and } \frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}.$ (06 Marks)

8 a. A particle moves on the curve $x = 2t^2$, $y = t^2 - 4t$, z = 3t - 5, where t is time. Find the components of velocity and acceleration at time t = 1 in the direction of i - 3j + 2k.

(07 Marks)

b. If
$$\vec{F} = grad(x^3 + y^3 + z^3 - 3xyz)$$
. Then find $div \vec{F}$ and $curl \vec{F}$. (07 Marks)

c. Prove that
$$\nabla \times \left(\overrightarrow{\phi A} \right) = \nabla \phi \times \overrightarrow{A} + \phi \left(\nabla \times \overrightarrow{A} \right)$$
. (06 Marks)

First Semester B.E. Degree Examination, June / July 08

Engineering Mathematics - I

Time: 3 hrs.

2

3

Max. Marks:100

Note: Answer any FIVE full questions, choosing atleast two from each part.

PART - A

a. Find the nth derivative of $\frac{1}{(x+2)(2x+3)} + e^{2x} \cos x$. (07 Marks)

b. If $y^{\frac{1}{m}} + y^{-\frac{1}{m}} = 2x$ prove that $(x^2 - 1)y_{n+2} - (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$. (07 Marks)

c. Find the angle between the curves $r = \frac{a}{1 + \cos \theta}$, and $r = \frac{b}{1 - \cos \theta}$. (06 Marks)

a. If $u = \log (x^3 + y^3 + z^3 - 3xyz)$, show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x + y + z}$. (07 Marks)

b. If $u = \tan^{-1} \left(\frac{x^2 + y^2}{x + y} \right)$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{2} \sin 2u$. (07 Marks)

c. If $u = x^2 + y^2 + z^2$, v = xy + yz + zx, w = x + y + z. Find $\int_{0}^{\infty} \left(\frac{u + v + w}{x + y + z} \right) dv$. (06 Marks)

a. Obtain a reduction formula for $In = \int \csc^n x \, dx$. Hence find I_3 . (07 Marks)

b. Evaluate $\int_{0}^{\infty} \frac{dx}{\left(1 + x^{2}\right)^{n}}$, n>1. (07 Marks)

c. Trace the curve $a^2y^2 = x^2(a^2 - x^2)$. (06 Marks)

4 a. Find the length of the curve $y^2 = 4ax$ cutoff by the line 3y = 8x. (07 Marks)

b. Find the area between the curve $y^2(a + x) = x^2(a - x)$ and the asymptote. (07 Marks)

c. Evaluate $\int_{0}^{1} \frac{x^{\alpha} - 1}{\log x} dx$, $(\alpha > -1)$ using differentiation under integral sign. (06 Marks)

PART - B

5 a. Solve $\frac{dy}{dx} = \frac{y}{x + \sqrt{xy}}$. (07 Marks)

b. Solve $\frac{x^2 dy}{dx} - 2xy - x + 1 = 0$; y(1) = 0. (07 Marks)

c. For the family of curves $x^2 + 3y^2 = cy(C - parameter)$, find the orthogonal family of curves. (06 Marks)

6 a. Find the nature of the series, $1 + \frac{2!}{2^2} + \frac{3!}{3^3} + \frac{4!}{4^4} + ---$ (07 Marks)

b. Test for convergence of the series, $\frac{1}{1+x} + \frac{1}{1+2x^2} + \frac{1}{1+3x^3} + ----$ (07 Marks)

c. Test the series for i) Absolute convergence ii) Conditional convergence.

 $x - \frac{x^2}{\sqrt{2}} + \frac{x^3}{\sqrt{3}} - \frac{x^4}{\sqrt{4}} + - - - - \cdot$ (06 Marks)

7 a. Find the angle between any two diagonals of a cube. (07 Marks)

b. Show that the points (0, -1, 0), (2, 1, -1), (1, 1, 1) and (3, 3, 0) are coplanar. (07 Marks)

c. Find the shorter distance between the line x + y + 2z - 3 = 0 = 2x + 3y + 4z - 4 and z - axis. (06 Marks)

8 a. A particle moves on the curve $x = 2t^2$, $y = t^2 - 4t$, z = 3t - 5, where t is time. Find the components of velocity and acceleration at time t = 1 in the direction $\hat{i} - 3\hat{j} + 2\hat{k}$. (07 Marks)

b. Find a, b, c, so that the directional derivative of $\phi = axy^2 + byz + cz^2x^3$ at (1, 2, -1) has maximum magnitude of 64 in the direction of z – axis. (07 Marks)

c. Prove that $\operatorname{curl} (\phi \vec{F}) = \phi (\nabla \times \vec{F}) + \nabla \phi \times \vec{F}$ (06 Marks)

•

First Semester B.E. Degree Examination, Dec.08/Jan.09

Engineering Mathematics - I

Time: 3 hrs.

Max. Marks:100

Note:1. Answer any FIVE full questions selecting at least two questions from each part.

- 2. Answer all objective type questions only in first and second writing pages.
- 3. Answer for Objective type questions shall not be repeated.
- a. i) If $y = x^{2n}$ then y_{n+1} is

A)
$$\frac{(2n)!}{(n-1)!} x^{n-1}$$

B)
$$\frac{(2n)!}{n!} x^{n-}$$

A)
$$\frac{(2n)!}{(n-1)!}x^{n-1}$$
 B) $\frac{(2n)!}{n!}x^{n-1}$ C) $\frac{(n-1)!}{(2n)!}x^{n-1}$ D) Zero

- If two curves intersect orthogonally in Cartesian form, the angle between the same two curves in polar form is,
 - A) π_{4}
- B) Zero
- C) 1 radian
- D) None of these
- If the angle between the radius vector and the tangent is constant, then the curve is,
- B) $r = a \cos \theta$
- C) $r^2 = a^2 \cos(2\theta)$

- The nth derivative of a constant function is,
- C) Zero
- D) ∞

(04 Marks)

Find the nth derivative of $\frac{x+3}{(x-1)(x+2)}$

(04 Marks)

c. If $y = \sin(m\sin^{-1}x)$ express $(1-x^2)y_{n+2} - (2n+1)xy_{n+1}$ in terms n^{th} derivative of y.

(06 Marks)

Find the pedal equation of the polar curve $r = a(1 + \cos \theta)$.

(06 Marks)

- If $u = x^n + y^n$ then $\frac{\partial^n u}{\partial x^{n-1} \partial y}$ is equal to $((n \ge 2))$ 2

 - A) Zero B) $(n!)x + ny^{n-1}$
- C) (n!)x
- D) (2n)!
- If $u = \sin(x + ay) + g(x ay)$ then the value of $\frac{\partial^2 u}{\partial x^2}$ is

- A) $\frac{\partial^2 u}{\partial x^2}$ B) $a \frac{\partial^2 u}{\partial x^2}$ C) $a^2 \frac{\partial^2 u}{\partial x^2}$ D) $-a^2 \frac{\partial^2 u}{\partial x^2}$
- iii) If $u = f(x^2 + y^2 + z^2)$ and $\frac{\partial u}{\partial x} = 2xf'$ then f' is derivative with respect to
- C) z
- D) $x^2 + y^2 + z^2$
- If u and v are the two functions depending on the independent variables x and y then u and v are independent of each other if and only if, for $J = J\left(\frac{u,v}{x,y}\right)$
 - A) J = 0
- B)
- D) J = -1
- (04 Marks)

b. If $u = x^2y + y^2z + z^2x$ show that $u_x + u_y + u_z = (x + y + z)^2$.

- (04 Marks)
- If $u = x \log(xy)$ where the implicit relation between x and y is $x^3 + y^3 + 3xy = 1$ find $\frac{du}{dx}$ (06 Marks)
- d. Define 'relative error' and 'percentage error'. Find the error in calculating the power $\omega = \frac{V^2}{R}$ due to errors h and k respectively in measuring voltage V and reistance R. (06 Marks)

3 a. i) The value of $\int_{0}^{\pi} \sin^4 x dx$ is

- A) $\frac{3\pi}{8}$ B) $\frac{3\pi}{16}$ C) $\frac{3\pi^2}{8}$
- D) zero

The value of $\int_{0}^{\frac{\pi}{2}} \sin^{99}(x)\cos(x)dx$ is

- A) $\frac{1}{99}$ B) $\frac{\pi}{100}$ C) $\frac{99}{100}$ D) None of these

The tangents to the curve $x^3 + y^3 = 3axy$ at origin are

A) y = x and y = -x

- B) x = 0, y = 0
- C) Line perpendicular to y = x at $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ D) Do not exist

If the equation of the curve remains unchanged after changing r to -r the curve $r = f(\theta)$ is symmetric about

- A) Initial line
- B) A line perpendicular to initial line through pole
- C) Radially symmetric about the point pole
- . D) Symmetry does not exist. (04 Marks)

b. Evaluate $I = \int_{0}^{\pi} x \sin^7 x dx$.

(04 Marks)

Obtain the reduction formula for $\int \tan^n x dx$ and hence find the reduction formula for $\int_{1}^{\infty} \tan^{n} x dx.$ (06 Marks)

d. Trace the curve $r = a \sin(2\theta)$.

(06 Marks)

i) If the derivative of arc length $\frac{ds}{dr} = \phi(r)$ then $\phi(r)$ is

A)
$$\sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2}$$
 B) $\sqrt{r^2 \left(\frac{d\theta}{dr}\right)^2 + 1}$ C) $\sqrt{\frac{r}{\left(\frac{dr}{d\theta}\right)^2}}$ D) $\sqrt{s^2 + r^2}$

C)
$$\sqrt{\frac{r}{\left(\frac{dr}{d\theta}\right)^2}}$$

$$D) \sqrt{s^2 + r^2}$$

If S₁ and S₂ are surface areas of the solids generated by revoling the ellipses $\frac{x^2}{L^2} + \frac{y^2}{g^2} = 1$ about the y-axis and then

- B) $S_1 < S_2$ C) $S_1 = S_2$ D) Cant predict

iii) If V_i = volume of the solid generated by revolving area included between x-axis and $x^2 + y^2 = a^2$ about x-axis

 V_2 = volume of the solid generated by the entire area of the circle $x^2 + y^2 = a^2$ about x-axis then

- A) $V_1 = V_2$ B) $V_2 = 2V_1$ C) $V_2 = 4V_1$ D) $V_2 = 16V_1$

Scinivas Institute of Technology Library, Mangalore

06MAT13

The length of the arc in parametric form is 4

B)
$$s = \int_{t_1}^{t_2} \sqrt{1 + \left(\frac{dx}{dt}\right)^2} dt$$

C)
$$s = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$
 D)
$$s = \int_{t_1}^{t_2} \sqrt{\left(dx\right)^2 + \left(dy\right)^2} dt$$

D)
$$s = \int_{t_1}^{t_2} \sqrt{(dx)^2 + (dy)^2 dt}$$

(04 Marks)

- b. Find the volume of the solid generated by revolving the part of the parabola $y^2 = 4ax$ lying between the vertex and the latus-rectum, about the x-axis. (04 Marks)
- Find the surface area of the solid of revolution of the curve $r = 2a\cos\theta$ about the initial line. (06 Marks)
- Evaluate $\int_{0}^{1} \frac{x^{\alpha} 1}{\log x} dx$, $\alpha \ge 0$.

(06 Marks)

Part B

- The order of the differential equation $\sqrt{\frac{dy}{dx}} = (4x + y + 1)$ is
- B) ½
- D) does not exist
- The differential equation $\frac{dy}{dx} = \sin(x + y + 1)$ with y(0) = 1 is
 - A) zero value problem
- Infinite solution problem B)
- C) Initial value problem
- D) None of these
- By Replacing $\frac{dy}{dx}$ by $-\frac{dx}{dy}$ in the differential $f\left(x,y,\frac{dy}{dx}\right)=0$ we get the differential iii) equation of,
 - A) Polar trajectory
- B) Parametric trajectory
- C) Orthogonal trajectory
- D) Parallel trajectory
- In the homogeneous differential equation $\frac{dy}{dx} = \frac{f(x,y)}{\phi(x,y)}$ the degrees of the homogeneous
 - functions f(x, y) and $\phi(x, y)$ are,
 - A) Same
- Different B)
- C) Relatively prime
- D) Exactly one (04 Marks)

b. Solve $e^x \tan y dx + (1 - e^x) \sec^2 y dy = 0$.

(04 Marks)

c. Solve $x \log x \frac{dy}{dx} + y = 2 \log x$.

(06 Marks)

Find the orthogonal trajectory of $r^2 = a^2 \cos(2\theta)$.

- 6 The sum of infinite series $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$ is
 - A) 9.999...
- B) 99.999.... C) ∞
- D) Indeterminate
- If the positive term infinite series $\sum_{n=1}^{\infty} u_n$ and $\sum_{n=1}^{\infty} v_n$ are divergent then $\sum_{n=1}^{\infty} u_n \sum_{n=1}^{\infty} v_n$ is
 - A) Convergent B) Divergent
- C) Oscillatory D) Cant predict
- If an arbitrary term infinite series $\sum_{n=1}^{\infty} u_n$ is divergent then its absolute term series
 - $\sum_{n=1}^{\infty} |u_n| \text{ is,}$
 - A) Convergent B) Divergent C) Either convergent or divergent D) Cant predict 3 of 4

iv) If $\sum u_n$ is positive term infinite series and if $\lim_{n\to\infty} u_n = 0$ then $\sum u_n$ is 6 A) Convergent B) Divergent C) Either convergent or divergent D) Oscillatory (04 Marks) Test the convergence of the series, $\frac{1}{(1)(4)(5)} + \frac{1}{(2)(9)(11)} + \frac{1}{(3)(14)(17)} + \frac{1}{(4)(19)(23)} + \dots$ (04 Marks) Test the convergence of $\sum_{n=1}^{\infty} \frac{4.7.....(3n+1)}{1.2.....n} x^n$ (06 Marks) Test the absolute and conditional convergence of the following series: i) $1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \dots$ ii) $1 - \frac{1}{2^3} + \frac{1}{3^3} - \frac{1}{4^3} + \dots$ (06 Marks) i) If *l*, m, n are direction cosines of a straight line then, 7 B) $l^2 + m^2 + n^2 = 1$ C) l = m = n D) $\frac{l}{m} = \frac{m}{n} = \frac{n}{l}$ A) l+m+n=1Skew lines are, ii) A) Intersecting B) Parallel C) Planar D) Not coplanar iii) The angle between the two lines with direction ratios (1, 1, 2) (2, 0, -1) is A) 0° B) 45° C) 90° D) $\cos^{-1}\frac{3}{5}$ iv) A point on the line $\frac{x+1}{2} = \frac{y-3}{3} = \frac{z}{-1}$ is A) (1, 6, 1) B) (1, 6, -1) C) (-1, 6, -1)D) (1, -6, 1) (04 Marks) Find the intercept form of a plane 2x + 3y + 4z + k = 0 passing through a point (1, 1, 1). Find the equation of a plane passing through the line of intersection of the planes 7x-4y+7z+16=0 and 4x+3y-2z+13=0 and perpendicular to the plane (06 Marks) x - y - 2z + 5 = 0Find the magnitude and the equations of the shortest distance between the lines $\frac{x}{2} = \frac{y}{-3} = \frac{z}{1}$ and $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$. (06 Marks) i) If $\vec{V} = x^2 i + y^2 j + z^2 k$ then \vec{V} at (x, y, z) = (1, 1, 1) becomes 8 B) Constant vector C) Scalar D) Complex number A) Unit vector If f is a scalar function then $\nabla f = \text{grad} f$ is B) Vector point function A) Scalar point function D) Neither A nor B. C) Both A and B div curl F is equal to D) does not exist A) zero B) unity If a particle moves along a curve R(t) = x(t)i + y(t)j + z(t)k then $\frac{dR}{dt}$ is A) Radial vector B) Tangential vector C) Normal vector D) Unit vector (04 Marks) b. Find a unit vector normal to the surface $x^3y^3z^2 = 4$ at the point (-1, -1, 2). (04 Marks) Prove that div Curl $F = \nabla \cdot \nabla \times F = 0$. (06 Marks) d. If $\vec{V} = 3xy^2z^2i + y^3z^2j - 2y^2z^3k$ and $\vec{F} = (x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k$ then prove that V is solenoidal and F is irrotational. (06 Marks)

Small as lestique or lecondany

USN

06MAT11

First Semester B.E. Degree Examination, June-July 2009 **Engineering Mathematics – I**

Max. Marks:100 Time: 3 hrs.

Note: 1. Answer any Five full questions, choosing at least two from each part.

- 2. Answer all objective type questions only in OMR sheet page 5 of the Answer Booklet.
- 3. Answer to the objective type questions on sheets other than OMR will not be valued.

1 a. i) The nth derivative of
$$\frac{1}{(ax+b)^2}$$
 is

(A)
$$\frac{(-1)^n n! a^n}{(ax+b)^{n+1}}$$
 (B) $\frac{(-1)^n n + 1! a^n}{(ax+b)^{n+2}}$ (C) $\frac{n + 1! a^n}{(ax+b)^n}$ (D) $\frac{n! a^n}{(ax+b)^{n+1}}$

ii) If
$$y^2 = f(x)$$
, a polynomial of degrees 3, then $2\frac{d}{dx}\left(y^3\frac{d^2y}{dx^2}\right)$ equals

(A)
$$f'''(x) + f''(x)$$
 (B) $f(x)f''(x)$ (C) $f(x)f'''(x)$ (D) $f'''(x)f(x)$

iii) The Pedal equation in polar coordinate system

(A)
$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$$
 (B) $\left|\phi_1 - \phi_2\right|$ (C) $\tan \phi - r \frac{d\theta}{dr}$ (D) $\cot \phi = r \frac{dr}{d\theta}$

iv) The curve $r = \frac{a}{1+\cos\theta}$ intersect orthogonally with the following curve

(A)
$$r = \frac{b}{1-\cos\theta}$$
 (B) $r = \frac{b}{1-\sin\theta}$ (C) $r = \frac{c}{1+\sin\theta}$ (D) $r = \frac{d}{1+\cos^2\theta}$ (04 Marks)

b. Find the nth derivative of $y = \cosh x \sin x$

(04 Marks)

c. If
$$y = \left[x + \sqrt{x^2 + 1}\right]^m$$
 prove that $(1+x^2)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$ (06 Marks)

d. Show that the pairs of curves $r = a(1+\cos\theta) \& r = b(1-\cos\theta)$ intersect orthogonally.

(06 Marks)

2 a. i) If
$$f(x,y) = \frac{1}{x^3} + \frac{1}{y^3} + \frac{1}{x^3 + y^3}$$
, then $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$ is

(A) 0 (B) 3f (ii) If u = f(x-y, y-z, z-x), then $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$

(A) 2 (B) 0 (C) 1 (D)
$$x + y + z$$

iii) If an error of 1% is made in measuring its base and height, the percentage error in the area of a triangle is

area of a triangle is

(A)
$$0.2\%$$
 (B) 1% (C) 2% (D) 0.1%

(04 Marks)

iv) In polar coordinates,
$$x = r\cos\theta$$
, $y = r\sin\theta$ then $\frac{\partial(x,y)}{\partial(r,\theta)}$ is equal to

(A) r^3 (B) r^2 (C) r (D) - r (04 Marks)

b. If $u = \log(x^3 + y^3 + z^3 - 3xyz)$, then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x + y + z}$. (04 Marks)

If $u = x^2 - y^2$, v = 2xy and $x = r\cos\theta$, $y = r\sin\theta$ then determine the Jacobian $\frac{\partial(u, v)}{\partial(r, \theta)}$. (06 Marks)

Two sides of a triangle are 10cm & 12cm respectively, the angle between them is measured as 15° with an error of 15 mins. Find the error in the calculated length of the third side of the (06 Marks) triangle due to error in the angle.

3	a.	i)	The value of the defi	inite integral $\int_{1}^{+1} x ^{1}$	dx is equal to				
		ii)		(B) 1 the curve $x^3 + y^3 = 3$ (B) $x - y - a = 0$	(C) π/2 axy is equal to (C) No asymptotes	(D) $\pi/4$ (D) $x + y - a = 0$	= 0		
		iii)	If $I_n = \int_{0}^{\pi/4} \cot^n \theta d\theta$,	then $n(I_{n-1}+I_{n+1})$ is	equal to				
			(A) 0	(B) 1	(C) 3	(D) None of th	nese.		
		iv)	∞ 2						
	b.	Obta	(A) 4/15 in the reduction formu		(C) 2/15	(D) 15/2	(04 Marks) (04 Marks)		
	c.	Evalı	the unit of $\int_{0}^{\pi} x \sin^2 x \cos^4 x dx$	х .			(06 Marks)		
	d.	Trace	e the curve $y^2(a-x) = x^2$	x^3 , $a > 0$.			(06 Marks)		
4	a.	i)	The volume general between $y = 0 \& y =$	2a is			·		
			$(A) \frac{2\pi a^3}{5}$	$(B) \frac{32\pi a^5}{5a^2}$	$(C) \frac{5\pi a^2}{3}$	(D) $\frac{10\pi^2 a^3}{5}$			
				(B) 30	(C) 20	(D) 5			
			If $x = x(t)$, $y = y(t)$ th						
			(A) $\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$ (B) $\sqrt{\left(\frac{dx}{dt}\right)^2 - \left(\frac{dy}{dt}\right)^2}$ (C) $\sqrt{1 + \left(\frac{dy}{dx}\right)^2}$ (D) None of these						
			$\frac{\mathrm{d}}{\mathrm{d}\alpha} \left[\int_{a}^{b} f(x,\alpha) \mathrm{d}x \right]$ is equ						
			(A) $\int_{a}^{b} \frac{d}{d\alpha} f(x,\alpha) dx $ (I	3) $\int_{a}^{b} \frac{\partial}{\partial \alpha} f(x, \alpha) dx 0$	(C) $\int_{b}^{a} \frac{\partial}{\partial \alpha} f(x, \alpha) dx$ (D)	0 ((04 Marks)		
	b.	Find	ds/dθ and ds/dr for the	e curve $r = a(1 - cc)$	$\cos\theta$).		(04 Marks)		
	c.		the surface area of +cost)	the solid generate	ed by revolving the	e cycloid x =	a(t + sint) (06 Marks)		
	d.	Giver	that $\int_{0}^{\pi} \frac{dx}{\alpha - \cos x} = \frac{1}{\sqrt{\alpha}}$	$\frac{\pi}{2}$, hence evaluate $\frac{\pi}{2}$	$\int_{0}^{\pi} \frac{dx}{(\alpha - \cos x)^2}$		(06 Marks)		
	$\underline{PART - B}$								
5	a.	i)	The solution of the d	ifferential equation	$\frac{\mathrm{d}y}{\mathrm{d}x} = x\mathrm{e}^{y-x^2}$				
			(A) $2e^{-y} + e^{-x^2} = c$				-c=0		
		ii) The integrating factor of the differential equation $\frac{dx}{dy} + \frac{3x}{y} = \frac{1}{y^2}$							
			$(A) e^{y^3}$	(B) y ³	(C) x^3	$(D) - y^3$			

- iii) The necessary condition for the differential equation to be exact
- (A) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$ (B) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ (C) $\frac{\partial M}{\partial y} + \frac{\partial N}{\partial x} = 0$ (D) $\frac{\partial M}{\partial y} = -\frac{\partial N}{\partial x}$
- iv) The orthogonal trajectory of $y^2 = 4a(x + a)$ is
 (A) $y^2 = 4a(x + a)$ (B) $x^2 = 4a(y + a)$ (C) y = mx + c (D) None of these. (04 Marks)
- b. Solve $e^{y} \left(\frac{dy}{dx} + 1 \right) = e^{x}$

(04 Marks)

c. Solve $\frac{dy}{dx} = \frac{x + 2y - 3}{2x + y - 3}$

- Find the orthogonal trajectories of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{a^2 + a^2} = 1$. (06 Marks)
- 6
- i) If $\lim_{n \to \infty} \frac{U_{n+1}}{U_n} = l$, then the series is convergent if (B) l > 1 (C) l = 1
 - (A) l < 1

- (D) l = 0

- ii) $\sum \frac{1}{n(n+2)}$ series is
 - (A) Convergent (B) Divergent
- (C) Oscillatory
- (D) Absolutely convergent.
- iii) Every absolutely convergent series is necessarily
 - (B) Convergent (A) Divergent
 - (C) Conditionally convergent (D) None of these
- iv) The convergence of the series $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7}$ is tested by
- (A) Ratio test (B) Raabe's test (C) Leibnitz test (D) Cauchy Riot test. (04 Marks) Examine the series $\frac{1}{1.3.5} + \frac{2}{3.5.7} + \frac{3}{5.7.9}$ for convergence. (04 Marks)
- Test the series for convergence $1 + \frac{2}{3}x + \frac{2.3}{3.5}x^2 + \frac{2.3.4}{3.5.7}x^3$, x > 0. (06 Marks)
- Find the nature of the series $\frac{x}{1.2} \frac{x^2}{2.3} + \frac{x^3}{3.4} \frac{x^4}{4.5} + \dots, x > 0$. (06 Marks)
- if 2x + 3y + 4z + 5 = 0 is the equation of a plane, then 2, 3, 4 represent 7 a.
 - (A) Direction ratios of the normal to the plane
 - (B) Direction cosines of the normal to the plane
 - (C) Direction ratios of a line parallel to the plane
 - (D) None of these
 - A line makes angles α , β , γ with the co-ordinate axes, then $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$ is equal to
 - (A) 1
- (C) 8/3
- (D) 4/3
- iii) The length of the perpendicular from the origin onto the plane 3x + 4y + 12z = 52 is (D) - 1(B)3(C) 0(A) 4
- iv) The two lines are said to be parallel if
 - (A) $a_1a_2 + b_1b_2 + c_1c_2 = 0$
- (B) $a_1/a_2 = b_1/b_2 = c_1/c_2$
- (C) $a_1/b_1 + a_2/b_2 + c_1/c_2 = 0$
- (D) None of these.

- (04 Marks)
- Show that the angle between any two diagonals of a cube is $\cos^{-1}(1/3)$. (04 Marks)
- Show that the lines $\frac{x+1}{1} = \frac{y+1}{2} = \frac{z+1}{3}$ and x + 2y + 3z 8 = 0 = 2x + 3y + 4z 11 intersect.
 - Find their point of intersection and the equation of the plane containing them. (06 Marks)
- Find the image of the point (2, -1, 3) in the plane 2x + 4y + z 24 = 0. (06 Marks)
- The velocity of the moving particle along the curve $x = e^{-t}$, $y = 2\cos 3t$, $z = 2\sin 3t$ is 8 i) a.
 - (A) $-e^{-t}i 6\sin 3tj + 6\cos 3tk$
- (B) $e^{-t}i 18\cos 3tj 18\sin 3tk$
- (C) $e^{-t}i + 2\cos 3tj + 2\sin 3tk$
- (D) $e^{-t} 6\sin 3t$

ii) The resultant of a gradient is

- (A) Vector
- (B) Scalar
- (C) Irrotational
- (D) Field

iii) If the vector $\vec{F} = (x + 3y)i + (y - 2z)j + (x + az)k$ is Solenoidal then a is equal to

- (A) 2 (B) 2 (C) 0 iv) If $F = x^2 + y^2 + z^2$, then curl grad F is (A) 1 (B) 0 (C) 1
- (D) 1

(D) 2

b. Find the angle between the surfaces $\phi = x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point (04 Marks) (2,-1,2).

c. Show that $\vec{F} = \frac{xi + yj}{x^2 + y^2}$ is both Solenoidal & irrotational.

(06 Marks)

(04 Marks)

d. Prove that curl curl \vec{F} = grad div \vec{F} – $\nabla^2 \vec{F}$

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

06MAT11

First Semester B.E. Degree Examination, Dec.09/Jan.10 **Engineering Mathematics - I**

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing at least two from each part.

2. Answer all objective type questions only in OMR sheet page 5 of the Answer Booklet.

3. Answer to objective type questions on sheets other than OMR will not be valued.

PART - A

The nth derivative of sinhax is 1

A)
$$\frac{a^n}{2} \left[e^{ax} - (-1)^n e^{-ax} \right]$$

B)
$$\frac{a^n}{2} \left[e^{ax} + (-1)^n e^{-ax} \right]$$

C)
$$\frac{a^n}{2} \left[e^{-ax} + (-1)^n e^{ax} \right]$$

D)
$$\frac{a^n}{2} \left[e^{-ax} - (-1)^n e^{ax} \right]$$

ii) The angle between radius vector and the tangent to the curve $r = ae^{\theta \cot \alpha}$ at any point is

A)
$$\pi/2$$

B) α

C)0

D) $\pi/4$

iii) The angle between the curves $r = 2\sin\theta$ and $r = \sin\theta + \cos\theta$ is

A)
$$\pi/2$$

B) 0

C) $\pi/4$

D) $\pi/8$

iv) Pedal equation to the curve $r = a(1 + \cos\theta)$ is

C) $r^3 = 2ap$

 $D) r^3 = 2ap^2$

(04 Marks)

A) $r^2 = 2ap^3$ B) r = 3apFind the nth derivative of $log(4x^2 - 1)$.

(04 Marks)

c. If
$$y = \frac{\sinh^{-1} x}{\sqrt{1 + x^2}}$$
, prove that $(1 + x^2)y_{n+2} + (2n+3)xy_{n+1} + (n+1)^2y_n = 0$

(06 Marks)

Find the pedal equation to the curve $r^n = a^n cosn\theta$

(06 Marks)

2 a. i) If
$$u = (x - y)^4 + (y - z)^4 + (z - x)^4$$
 then $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$ is

D) 0

ii) If
$$u = f(x + ay) + g(x - ay)$$
 then $\frac{\partial^2 u}{\partial y^2}$ is

A)
$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$$

A) $\frac{\partial^2 \mathbf{u}}{\partial \mathbf{v}^2}$ B) $\mathbf{a} \frac{\partial^2 \mathbf{u}}{\partial \mathbf{v}^2}$ C) $\mathbf{a}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{v}^2}$

D) $\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x} \partial \mathbf{y}}$

iii) If
$$u = \cos^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y}{x}\right)$$
 then $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy}$ is

C)0

D) 1

iv) If
$$x = uv$$
 and $y = \frac{u}{v}$ then $\frac{\partial(x,y)}{\partial(u,v)}$ is

A)
$$-\frac{2u}{v}$$
 B) $-\frac{2v}{u}$

D) 1

(04 Marks)

b. If u is a homogeneous function of degree n prove that
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu$$
.

(04 Marks)

c. If
$$u = f(x - y, y - z, z - x)$$
 prove that $u_x + u_y + u_z = 0$.

(06 Marks)

d. If
$$x = r\cos\theta$$
, $y = r\sin\theta$ and $J = \frac{\partial(x,y)}{\partial(r,\theta)}$, $J' = \frac{\partial(r,\theta)}{\partial(x,y)}$ show that $JJ' = 1$.

3	a.	i)	The value of $\int_0^{\pi} \sin^2 \theta$	$n^{5}\left(\frac{x}{2}\right)dx$ is			
			A) $\frac{16}{15}$	B) $\frac{2}{15}$	C) 1	D) $\frac{15}{16}$	
		ii)		the curve $x^3 + y^3 = 3$ B) $x + y - a = 0$		D) x - y = 0	
		iii)	The value of $\int_0^1 x^6$	$\sqrt{1-x^2} dx$ is			
			A) $\frac{8\pi}{135}$	B) $\frac{\pi}{16}$	$C) \frac{5\pi}{256}$	D) $\frac{5\pi}{126}$	
		iv)	If n is odd, the va	alue of $\int_{0}^{\pi} \sin^{m} x \cos x$	s ⁿ x dx is		
			A) 1	B) 2	C) 3	D) 0	(04 Marks)
	b.	Ob	tain the reduction fo	ormula for∫sin ⁿ x dx	ζ.		(04 Marks)
	c.	Eva	aluate $\int_0^{2a} x^2 \sqrt{2ax} - \frac{1}{2a} = \frac{1}{2a} \int_0^{2a} x^2 \sqrt{2ax} - \frac{1}{2a} = \frac{1}{2a} = \frac{1}{2a} \int_0^{2a} x^2 \sqrt{2ax} - \frac{1}{2a} = 1$	$-x^2$ dx			(06 Marks)
	d.	Tra	ace the curve $y^2(a -$	$(-x) = x^2(a+x), a >$	0.		(06 Marks)
4	a.	The length of the arc of the curve $y = \log(\sec x)$ between the points with $x = 0$ and $x = \pi/3$ is					
			A) $\log(2+\sqrt{3})$	B) $\log(2-\sqrt{3})$	C) $\log(\sqrt{3}+2)$	D) $\log(\sqrt{3}-2)$	
		ii)	The area bounded A) 1	by the parabola y = B) 1/2	$4x - x^2$ and the line C) 9/2	e y = x is D) 2/9	
		iii)	The surface area g	generated when the	curve $y = f(x)$, $a \le x$	≤ b is revolved abo	out x axis is
		,					
			A) $\int_{a}^{\pi} y ds$	B) $\int_{a}^{b} 2\pi y ds$	C) Jydx	D) jy dx	
		iv)	The volume gener	rated when the curve	$y = \frac{x}{1 + x^2}, 0 \le x \le$	≤ ∞ is revolved abo	ut x-axis is
			A) $\frac{\pi^2}{4}$	B) $\frac{\pi}{4}$	C) π	D) 2π	(04 Marks)
	b.	Fir	nd the perimeter of t	the asteroid $x^{2/3} + y$	$a^{2/3} = a^{2/3}$.		(04 Marks)
	c.			rated when the curve			al line. (06 Marks)
	d.	Us	ing the differentiation	on under integral sig	gn evaluate $\int_{0}^{1} \frac{x^{\alpha} - 1}{\log x}$	$-dx$, $\alpha \ge 0$.	(06 Marks)

PART – B

5 a. i) The solution of the differential equation
$$(x^2 - 3y^2)dy = 2xy dx$$
 is
A) $x^2 = 3y^2 + Cy$ B) $x^2 + 3y^2 = Cy$ C) $3x^2 + y^2 = Cx$ D) $x^2 + 3y^2 = Cx$

- The solution of the differential equation $\frac{dy}{dx} + y \cot x = \cos x$ is
 - A) $2y = \csc x + A \sin x$
- B) $y = A \sin x + \csc x$
- C) $2y = \sin x + A \csc x$
- D) $y = \sin x + A \csc x$
- iii) The integrating factor for the differential equation $(x+1)\frac{dy}{dx} y = e^{3x}(x+1)^2$ is
 - A) $\frac{1}{y+1}$
- B) $\frac{1}{(x+1)^2}$ C) $\log(x+1)$
- D) log x
- iv) The orthogonal trajectory of the family $x^2 + y^2 = c^2$ is A) x + y = c B) xy = c C) $x^2 + y^2 = x + y$ D) y = cx

- - (04 Marks)

b. Solve $\sin^{-1}\left(\frac{dy}{dx}\right) = x + y$.

(04 Marks)

c. Solve $x^2ydx - (x^3 + y^3) dy = 0$.

(06 Marks)

Find the orthogonal trajectory of the family $r^n \cos n\theta = a^n$.

- (06 Marks)
- 6 a. i) If $\sum_{n=0}^{\infty} u_n$ is convergent series of positive terms then $\lim_{n\to\infty} u_n$ is
- C)0
- D) > 0

- ii) The series $\sum_{n=1}^{\infty} \sqrt{n^2 + 1} 1$ is
 - A) Convergent
- B) Divergent
- C) Oscillatory
- D) None of these.

- iii) $\sum_{i=1}^{\infty} \frac{x^{i}}{n(n+1)}$ converges if
 - A) $x \le 1$
- C) x > 1
- D) All x

- iv) The series $\sum \frac{x^n}{(n+1)^n}$, x > 0 is
 - A) Divergent
- B) Convergent
- C) Oscillatory
- D) None of these.
- (04 Marks)
- Test the convergence of the series $\frac{1}{47.10} + \frac{4}{7.10.13} + \frac{9}{10.13.16} + \dots$ (04 Marks)
- Test the convergence of the series $\sum_{n=0}^{\infty} \left(1 \frac{3}{n}\right)^{n}$ (06 Marks)
- Test the series $\frac{x}{\sqrt{3}} \frac{x^2}{\sqrt{5}} + \frac{x^3}{\sqrt{7}} \dots$ for absolute convergence and conditional (06 Marks) convergence.

- 7 a. i) The angle between the line $\frac{x-1}{2} = \frac{y-1}{3} = \frac{z-1}{6}$ and XOY plane is

- A) $\sin^{-1}\left(\frac{7}{6}\right)$ B) $\sin^{-1}\left(\frac{6}{7}\right)$ C) $\cos^{-1}\left(\frac{6}{7}\right)$ D) $\cos^{-1}\left(\frac{7}{6}\right)$
- The equation of the plane passing through (4, -2, 1) and perpendicular to the line with direction cosines 7, 2, -3 is
 - A) x + 3y 4z 8 = 0
- C) 7x + 2y 3z 21 = 0
- B) 2x + 7y 3z 24 = 0D) 7x + 3y 2z + 21 = 0
- iii) If the lines $\frac{x-3}{1} = \frac{y-2}{3} = \frac{z-1}{4}$ and $\frac{x-4}{2} = \frac{y-2}{3} = \frac{z+6}{k}$ are coplanar then 'k' is
- iv) The lines $\frac{x-4}{1} = \frac{y+3}{-4} = \frac{z+1}{7}$ and $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$ intersect at A) (5, -7, 6) B) (7, 5, -6) C) (5, -6, 7) D) (7, 6, -5)

- (04 Ma
- b. Find the foot of the perpendicular from (1, 1, 1) to the line joining the points (1, 4, 6) and (04 Marks)
- c. Find the equation of the plane passing through the point (-1, 2, 1), (-3, 2, -3) and parallel to Y-axis. (06 Marks)
- d. Find the point of intersection of the lines

$$\frac{x-4}{1} = \frac{y+3}{-4} = \frac{z+1}{7}$$
 and $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$

- a. i) A particle moves along the curve $x = 1 t^3$, $y = 1 + t^2$, z = 2t 5. The acceleration at t = 1 is
 - A) 6i 2i
- B) -6i + 2i C) 2i 6i
- D) 2i + 6i
- ii) The unit normal vector to the surface $x^2y + 2xz = 4$ at the point (2, -2, 3) is along A) i - 2j - 2k B) i + 2j - kC) 2i + j + kD) i-j-2k
- iii) If $\overrightarrow{F} = (x + y + 1)i + j (x + y)k$ then $\overrightarrow{F} \cdot \text{curl } \overrightarrow{F}$ is A) 1 B) -1 C) 0

- D) 2

- iv) If $\phi = 2x^3y^2z^4$ then $\nabla^2\phi$ at (1, 1, 1) is
 - A) 20
- C) 10
- D) 40
- (04 Marks)
- b. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at (2, -1, 2) (04 Marks)
- c. Show that $\overrightarrow{F} = (2xy^2 + yz)i + (2x^2y + xz + 2yz^2)j + (2yz^2 + xy)k$ is a conservative force field and find its scalar potential. (06 Marks)
- d. If ϕ is a scalar field and \overrightarrow{F} is a vector field prove that $\nabla \cdot \overrightarrow{QF} = \phi(\nabla \cdot \overrightarrow{F}) + \nabla \phi \cdot \overrightarrow{F}$

First Semester B.E. Degree Examination, May/June 2010 **Engineering Mathematics - I**

Time: 3 hrs. Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing at least two from each part.

- 2. Answer all objective type questions only on OMR sheet page 5 of the Answer Booklet.
- 3. Answer to objective type questions on sheets other than OMR will not be valued.

PART - A

a. i) The nth derivative of $\frac{1}{v^p}$ is

A)
$$\frac{(-1)^{n+1}(p+n)!}{(p-1)! x^{p+n}}$$

A)
$$\frac{(-1)^{n+1}(p+n)!}{(p-1)! x^{p+n}}$$
 B) $\frac{(-1)^{n+1}(p+n-1)!}{(p-1)! x^{p+n}}$ C) $\frac{(-1)^n(p+n-1)!}{(p-1)! x^{p+n}}$ D) $\frac{(-1)^n(p+n-1)!}{p! x^p}$ ii) The n^{th} derivative of e^x is

C)
$$\frac{(-1)^n(p+n-1)}{(p-1)!} x^{p+n}$$

D)
$$\frac{(-1)^n(p+n-1)!}{p! x^p}$$

C)
$$a^2e^x$$

iii) The angle between radius vector and tangent is

A)
$$\tan \phi = r \frac{d\theta}{dr}$$

A)
$$\tan \phi = r \frac{d\theta}{dr}$$
 B) $\tan \phi = r^2 \frac{d\theta}{dr}$ C) $\tan \phi = \frac{1}{r} \frac{d\theta}{dr}$ D) $\tan \phi = \frac{dr}{d\theta}$

C)
$$\tan \phi = \frac{1}{r} \frac{d\theta}{dr}$$

D)
$$\tan \phi = \frac{d\mathbf{r}}{d\theta}$$

iv) The curve $r = \frac{a}{1 + \cos \theta}$ intersect orthogonally with the following curve: A) $r = \frac{b}{1 - \cos \theta}$ B) $r = \frac{b}{1 + \sin \theta}$ C) $r = \frac{b}{1 + \sin^2 \theta}$ D) $r = \frac{b}{1 + \cos^2 \theta}$

A)
$$r = \frac{b}{1 - \cos \theta}$$

B)
$$r = \frac{b}{1 + \sin \theta}$$

C)
$$r = \frac{b}{1 + \sin^2 \theta}$$

$$D) r = \frac{b}{1 + \cos^2 \theta}$$

b. Find the n^{th} derivation of $y = \sin h 2x \sin 4x$.

(04 Marks)

c. If
$$y = \sin h \left(m \log(x + \sqrt{x^2 + 1}) \right)$$
, prove that $(x^2 + 1)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$.

Find the pedal equation of the curve $r^m = a^m (\cos m\theta + \sin m\theta)$.

(06 Marks)

2 a. i) If
$$u = \log\left(\frac{x^2}{y}\right)$$
, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to

D) 1

ii) If
$$u = x^3 + y^3$$
, then $\frac{\partial^3 u}{\partial x^2 \partial y}$ is equal to

$$A) -3$$

D)
$$3x + 3y$$

iii) If
$$x = r \cos \theta$$
, $y = r \sin \theta$, then $\frac{\partial(x, y)}{\partial(r, \theta)}$ is equal to

C)
$$\frac{1}{2}$$

iv) If an error of 1% is made in measuring its length and breadth, the percentage error in the area of a rectangle is

(04 Marks)

b. If
$$z = e^{ax+by} + (ax - by)$$
, prove that $b \frac{\partial z}{\partial x} + a \frac{\partial z}{\partial y} = 2abz$.

c. If $\mathbf{w} = \mathbf{f}(\mathbf{x}, \mathbf{y})$, $\mathbf{x} = \mathbf{r} \cos \theta$, $\mathbf{y} = \mathbf{r} \sin \theta$, show that $\left(\frac{\partial \mathbf{t}}{\partial \mathbf{x}}\right)^2 + \left(\frac{\partial \mathbf{t}}{\partial \mathbf{y}}\right)^2 = \left(\frac{\partial \mathbf{w}}{\partial \mathbf{r}}\right)^2 + \frac{1}{\mathbf{r}^2} \left(\frac{\partial \mathbf{w}}{\partial \theta}\right)^2$.

- d. If u, v are functions of r, s and r, s are functions of x, y, prove that $\frac{\partial(\mathbf{u}, \mathbf{v})}{\partial(\mathbf{x}, \mathbf{v})} = \frac{\partial(\mathbf{u}, \mathbf{v})}{\partial(\mathbf{r}, \mathbf{s})} \times \frac{\partial(\mathbf{r}, \mathbf{s})}{\partial(\mathbf{x}, \mathbf{v})}$ (06 Marks)
- 3 a. i) The value of $\int_{0}^{\pi} \sin^{5}\left(\frac{x}{2}\right) dx$ is

- B) $\frac{25}{16}\pi$ C) $\frac{16\pi^2}{25}$ D) $\frac{25}{16}\pi^2$
- ii) The curve $y^2(a-x) = x^2(a+x)$ is symmetrical about the D) none of these C) both x and y
- iii) The value of $\int_{1}^{1} x^{\frac{3}{2}} (1-x)^{\frac{3}{2}} dx$ is
 - A) $\frac{\pi}{32}$
- B) $\frac{-\pi}{32}$ C) $\frac{3\pi}{128}$
- D) $\frac{-3\pi}{128}$
- iv) If $f(r, \theta) = f(-r, \theta)$ then the curve is symmetrical about the
 - A) initial line
- B) pole
- C) origin
- D) tangential line
- (04 Marks)

b. Evaluate $\int_{0}^{\infty} \frac{x^2}{(1+x^2)^{\frac{7}{2}}} dx$.

- (04 Marks)
- Obtain the reduction formula for $\int_{-\infty}^{\pi/4} see^n x dx$.

(06 Marks)

Trace the curve $y^2(a^2 + x^2) = x^2(a^2 - x^2)$.

- (06 Marks)
- i) If y = f(x) be the equation of the Cartesian curve then $\frac{ds}{dx}$ is equal to
 - A) $\sqrt{1+y_1^2}$ B) $\sqrt{1+y_1}$ C) $-\sqrt{1+y_1^2}$ D) $-\sqrt{1+y^2}$

- ii) The area of the cardioid $r = a(1 + \cos \theta)$ is
 - A) $\frac{3}{2}\pi a$ B) $\frac{2}{3}\pi a$ C) $\frac{3}{2}\pi a^2$ D) $\frac{2}{3}\pi a^2$

- iii) The surface area of the solid got by revolving the circle $r = 2a \cos \theta$ about the initial line
 - A) $4\pi^2$ a
- B) $4\pi a^3$

- iv) The volume generated by the revolution of the curve $y = \frac{a^3}{a^2 + x^2}$ about its asymptote is
 - A) $\frac{\pi^2 a^3}{2}$ B) $\frac{\pi a^3}{2}$ C) $\frac{\pi a^2}{2}$ D) $\frac{\pi a}{2}$

- (04 Marks)
- b. Find the length of the arc of the curve $y = \log \sec x$ between the points for which x = 0 and $x = \frac{\pi}{3}$. (04 Marks)

- c. Find the surface area of the solid got by revolving the arch of the cycloid $x = a(t + \sin t)$, $y = a(t + \cos t)$ about the base. (06 Marks)
 - d. Evaluate $\int_{-\infty}^{\infty} \frac{\tan^{-1} \alpha x}{x(1+x^2)} dx$ where $\alpha \ge 0$ using the rule of differentiation under the integral sign. (06 Marks)

PART - B

5 a. i) The order of the differential equation
$$\left(\frac{dy}{dx}\right)^2 - 5\frac{dy}{dx} + 4y = 0$$
 is

- A) 2

- ii) The integrating factor of the differential equation $\frac{dy}{dy} + y \cos x = \frac{\sin 2x}{2}$ is
- B) $e^{\sin^3 x}$
- C) $e^{\sin x}$
- iii) The solution of the differential equation $\frac{dy}{dx} = \frac{y}{x} \csc \frac{y}{x}$ is

 - A) $\cos\left(\frac{y}{x}\right) \log x = c$ B) $\cos\left(\frac{y}{x}\right) + \log x = c$
 - C) $\cos^2\left(\frac{y}{x}\right) + \log x = c$ D) $\cos^2\left(\frac{y}{x}\right) \log x = c$
- iv) By replacing $\frac{dr}{d\theta}$ by $-r^2 \frac{dr}{d\theta}$ in the differential equation $f\left(r, \theta, -r^2 \frac{dr}{d\theta}\right) = 0$, we get the
 - differential equation of A) Orthogonal trajectory
- B) Polar trajectory
- C) Parametric trajectory
- D) None of these.

(04 Marks)

b. Solve: $(1-x^2)\frac{dy}{dx} - xy = 1$.

(04 Marks)

c. Solve: $xdx + ydy + \frac{xdy - ydx}{y^2 + y^2} = 0$.

- (06 Marks)
- d. Find the orthogonal trajectories of the family of curves $r = 2a(\cos\theta + \sin\theta)$ where a is a parameter. (06 Marks)
- 6 a. i) The series $\frac{1}{1^{P}} + \frac{1}{2^{P}} + \frac{1}{3^{P}} + \dots$ converges if

- D) $p \le 1$

- ii) $\sum \sin\left(\frac{1}{n}\right)$ is
 - A) convergent
- B) divergent
- C) oscillatory
- D) none of these
- iii) The convergence of the series $\frac{1}{\sqrt{2}} \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} \frac{1}{\sqrt{5}} + \dots$
 - A) Leibnitz test

- B) Raabe's test C) Ratio test D) Cauchy's root test
- iv) If a series $\sum y_n$ is such that S_n does not tend to unique limit as $n \to \infty$, we say that the series $\sum y_n$ is
 - A) convergent
- B) divergent C) oscillatory
- D) none of these (04 Marks)
- b. Determine the nature of the series $\sum (\sqrt{n^2+1}-n)$

(04 Marks)

6		Test the convergence of the series $\frac{2}{3.4} + \frac{2.4}{3.5.6} + \frac{2.4.6}{3.5.7.8} + \dots$ (06 Ma)	rks)
	d.	Find the nature of the series $1 - \frac{1}{5} + \frac{1}{9} - \frac{1}{13} + \dots$ (06 Ma)	rks)
7	a.	 i) A line makes angles α, β, γ with coordinate axes, then cos 2α + cos 2β + cos 2γ is equal A) 1 B) 2 C) -1 D) -2 ii) Find the angle between the planes x - y + 2z - 9 = 0 and 2x + y + z = 7 is A) 30° B) 90° C) 60° D) 120° iii) Two straight lines which lie in the same plane are called A) parallel B) perpendicular C) coplanar D) non-coplanar iv) The normal form of plane equation is A) x/a + y/b + z/c = 1 B) l² + m² + n² = 1 	l to
		a b c	
		C) $l_1 l_2 + m_1 m_2 + n_1 n_2 = 0$ D) $lx + my + nz = p$ (04 Ma)	rks)
	b.	Prove that the sum of the squares of the direction cosines of a line is equal to unity. (04 Ma) Find the image of the point $(1, 2, 3)$ in the plane $x + y + x = 9$. (06 Ma)	rks)
	d.	Find the shortest and the equation of the line of shortest distance between the l $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and the y-axis. (06 Ma)	
8	a.	i) The acceleration of the moving particle along the curve $x = \cos 3t$, $y = \sin 3t$, $z = -t$	is
		A) $-3\sin t \hat{i} + 3\cos 3t \hat{j} - \hat{k}$ B) $\cos t \hat{i} + \sin 3t \hat{j} - \hat{k}$	
		C) $-9\cos 3t \hat{i} - 9\sin 3t \hat{j}$ D) $-12\cos 3t \hat{i} - 12\sin 3t \hat{j}$	
		ii) The directional derivative of $x^2yz + xz^2$ at (-1, 2, 1) in the direction of $2\hat{i} - \hat{j} - 2\hat{k}$ is	
		A) $-\frac{7}{3}$ B) $\frac{7}{3}$ C) $\frac{3}{7}$ D) $-\frac{3}{7}$	
		iii) If a particle moves along a curve $\overrightarrow{R(t)} = x(t)i + y(t)j + z(t)k$ then $\frac{dR}{dt}$ is	
		A) Radial vector B) Tangential vector C) Normal vector D) Unit vector iv) Curl (grad φ) is equal to	
		A) unity B) $\hat{i} + \hat{j} + \hat{k}$ C) zero D) none of these (04 Ma)	rks)
	b.	Find the angle between the tangents $\vec{r} = t^2 \hat{i} + 2t \hat{j} - t^3 \hat{k}$ at the points $t = \pm 1$. (04 Ma)	rks)
	c.	If $\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}$ and $ \vec{r} = r$, find grad $\left(\text{div} \frac{\vec{r}}{r} \right)$. (06 Ma)	rks)
	d.	If \vec{a} is a constant vector and $\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}$, show that $\frac{1}{2} \operatorname{curl}(\vec{a} \times \vec{r}) = \vec{a}$. (06 Mar)	rks)

* * * * *